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Abstract. Trees have long been used as a graphical representation
of species relationships. However complex evolutionary events, such as
genetic reassortments or hybrid speciations which occur commonly in
viruses, bacteria and plants, do not fit into this elementary frame-
work. Alternatively, various network representations have been devel-
oped. Circular networks are a natural generalization of leaf-labeled trees
interpreted as split systems, that is, collections of bipartitions over
leaf labels corresponding to current species. Although such networks
do not explicitly model specific evolutionary events of interest, their
straightforward visualization and fast reconstruction have made them
a popular exploratory tool to detect network-like evolution in genetic
datasets. Standard reconstruction methods for circular networks, such
as Neighbor-Net, rely on an associated metric on the species set. Such a
metric is first estimated from DNA sequences, which leads to a key dif-
ficulty: distantly related sequences produce statistically unreliable esti-
mates. This is problematic for Neighbor-Net as it is based on the pop-
ular tree reconstruction method Neighbor-Joining, whose sensitivity to
distance estimation errors is well established theoretically. In the tree
case, more robust reconstruction methods have been developed using
the notion of a distorted metric, which captures the dependence of the
error in the distance through a radius of accuracy. Here we design the
first circular network reconstruction method based on distorted metrics.
Our method is computationally efficient. Moreover, the analysis of its
radius of accuracy highlights the important role played by the maximum
incompatibility, a measure of the extent to which the network differs
from a tree.
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1 Introduction

Trees have long been used to represent species relationships [1–3]. The leaves of
a phylogenetic tree correspond to current species while its branchings indicate
past speciation events. However, complex evolutionary events, such as genetic
reassortments or hybrid speciations, do not fit into this elementary framework.
Such non-tree-like events play an important role in the evolution of viruses,
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bacteria and plants. This issue has led to the development of various notions of
phylogenetic networks [4].

A natural generalization of phylogenetic trees is obtained by representing
them as split networks, that is, collections of bipartitions over the species set.
On a tree whose leaves are labeled by species names, each edge can be thought
of as a bipartition over the species: removing the edge produces exactly two
connected components. In this representation, trees are characterized by the fact
that their splits have a certain compatibility property [5]. More generally, circular
networks relax this compatibility property, while retaining enough structure to
be useful as representations of evolutionary history [6]. Such networks are widely
used in practice. Although they do not explicitly model specific evolutionary
events (see, e.g., [7] for a discussion), their straightforward visualization and fast
reconstruction have made them a popular exploratory tool to detect network-
like evolution in genetic datasets [8]. They are also useful in cases where data is
insufficient to single out a unique tree-like history, but instead supports many
possible evolutionary scenarios.

Standard reconstruction methods for circular networks, such as the Neighbor-
Net algorithm introduced in [9], rely on a metric on the species set. Such a met-
ric, which quantifies how far apart species are in the Tree of Life, is estimated
from genetic data. Very roughly, it counts how many mutations separate any
two species. This leads to a key difficulty: under standard stochastic models of
DNA evolution, distantly related sequences are known to produce statistically
unreliable distance estimates [10,11]. This is problematic for Neighbor-Net, in
particular, as it is based on the popular tree reconstruction method Neighbor-
Joining, whose sensitivity to distance estimation errors is well established theo-
retically [12].

In the tree case, more robust reconstruction methods were developed using
the notion of a distorted metric which captures the dependence of the error in
the distance through a radius of accuracy [13,14]. A key insight to come out of
this line of work, starting with the seminal results of [10,11], is that a phyloge-
netic tree can be reconstructed using only a subset of the pairwise distances—
those less than roughly the chord depth of the tree. Here the chord depth of
an edge is the shortest path between two leaves passing through that edge and
the chord depth of the tree is the maximum depth among its edges. This result
is remarkable because, in general, the depth can be significantly smaller than
the diameter. As a consequence, a number of results have been obtained show-
ing that, under common stochastic models of sequence evolution, a polynomial
amount of data suffices to reconstruct a phylogenetic tree with bounded branch
lengths. See e.g. [15–18]. This approach has also inspired practical reconstruction
methods [19,20].

Here we design the first reconstruction method for circular networks based
on distorted metrics. In addition to generalizing the chord depth, we show that,
unlike the tree case, pairwise distances within the chord depth do not in gen-
eral suffice to reconstruct these networks. We introduce the notion of maximum
incompatibility, a measure of the extent to which the network differs from a tree,
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to obtain a tight (up to a constant) bound on the required radius of accuracy.
Before stating our main results, we provide some background on split networks.

2 Background

We start with some basic definitions. See [4] for an in-depth exposition.

Definition 1 (Split networks [6]). A split S = (S1, S2) on a set of taxa X
is an unordered bipartition of X into two non-empty, disjoint sets: S1, S2 ∈ X ,
S1 ∩ S2 = ∅, S1 ∪ S2 = X . We say that N = (X ,S, w) is a weighted split
network (or split network for short) on a set of X if S is a set of splits on
X and w : S → (0,∞) is a positive split weight function. We assume that any
two splits S(1) = {S

(1)
1 , S

(1)
2 }, S(2) = {S

(2)
1 , S

(2)
2 } in S are distinct, that is,

S
(1)
1 �= S

(2)
1 , S

(2)
2 .

For any x, y ∈ X , we let S|x,y be the collection of splits in S separating x and
y, that is,

S|x,y = {S ∈ S : δS(x, y) = 1},

where δS(x, y), known as the split metric, is the indicator of whether S = (S1, S2)
separates x and y

δS(x, y) =
{

0, if x, y ∈ S1 or x, y ∈ S2.
1. otherwise. (1)

For a split S ∈ S|x,y, we write S = {Sx, Sy} where x ∈ Sx and y ∈ Sy. For
simplicity, we assume that S|x,y �= ∅ for all x, y ∈ X . (Taxa not separated by a
split can be identified.)

Let T = (V,E) be a binary tree with leaf set X and non-negative edge weight
function w : E → [0,+∞). We refer to T = (X , V, E,w) as a phylogenetic tree.
Any phylogenetic tree can be represented as a weighted split network. For each
edge e ∈ E, define a split on X as follows: after deleting e, the vertices of T
form two disjoint connected components with corresponding leaf sets S1 and
S2; we let Se = {S1, S2} be the split generated by e in this way. Conversely,
one may ask: given a split network N = (X ,S, w), is there a phylogenetic tree
T = (X , V, E,w) such that S = {Se : e ∈ E} (with w(Se) = w(e))? To answer
this question, we need the concept of compatibility.

Definition 2 (Compatibility [21]). Two splits S(1) = {S
(1)
1 , S

(1)
2 } and S(2) =

{S
(2)
1 , S

(2)
2 } are called compatible, if at least one of the following intersections

is empty:

S
(1)
1 ∩ S

(2)
1 , S

(1)
1 ∩ S

(2)
2 , S

(1)
2 ∩ S

(2)
1 , S

(1)
2 ∩ S

(2)
2 .

We write S(1) ∼ S(2) to indicate that S(1) and S(2) are compatible. Otherwise, we
say that the two splits are incompatible. A set of splits S is called compatible
if all pairs of splits in S are compatible.
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In words, for any two splits, there is one side of one and one side of the other
that are disjoint. The following result was first proved in [21]. Given a split
network N = (X ,S, w), there is a phylogenetic tree T = (X , V, E,w) such that
S = {Se : e ∈ E} if and only if S is compatible. For a collection of splits
S(1), . . . , S(�) on X , we let

CN (S(1), . . . , S(�)) = {S ∈ S : S ∼ S(i),∀i}, (2)

be the set of splits of N compatible with all splits in S(1), . . . , S(�), and we let

IN (S(1), . . . , S(�)) = {S ∈ S : ∃i, S � S(i)}, (3)

be the set of splits of N incompatible with at least one split in S(1), . . . , S(�).
We drop the subscript N when the network is clear from context.

Most split networks cannot be realized as phylogenetic trees. The following
is an important special class of more general split networks.

Definition 3 (Circular networks [6]). A collection of splits S on X is called
circular if there exists a linear ordering (x1, . . . , xn) of the elements of X for S
such that each split S ∈ S has the form:

S = { {xp, . . . , xq} , X − {xp, . . . , xq} }

for 1 < p ≤ q ≤ n. We say that a split network N = {X ,S, w} is a circular
network if S is circular.

Phylogenetic trees, seen as split networks, are special cases of circular networks
(e.g. [4]). Circular networks have the appealing feature that they cannot contain
too many splits. Indeed, let N = (X ,S, w) be a circular network with |X | = n.
Then |S| = O(n2) [6]. In general, circular networks are harder to interpret than
trees are. In fact, they are not meant to represent explicit evolutionary events.
However, they admit an appealing visualization in the form of an outer-labeled
(i.e., the taxa are on the outside) planar graph that gives some insight into how
“close to a tree” the network is. As such, they are popular exploratory analysis
tools. We will not describe this visualization and how it is used here, as it is
quite involved. See, e.g., [4, Chap. 5] for a formal definition and [8] for examples
of applications.

Split networks are naturally associated with a metric. We refer to a function
d : X × X → [0,+∞] as a dissimilarity over X if it is symmetric and d(x, x) = 0
for all x.

Definition 4 (Metric associated to a split network). Let N = (X ,S, w)
be a split network. The dissimilarity d : X × X → [0,∞) defined as follows

d(x, y) =
∑

S∈S|x,y

w(S),

for all x, y ∈ X , is referred to as the metric associated to N . (It can be shown
that d is indeed a metric. In particular, it satisfies the triangle inequality.)
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The metric associated with a circular network can be used to reconstruct it.

Definition 5 (d-splits). Let d : X × X → [0,∞) be a dissimilarity. The iso-
lation index αd(S) of a split S = {S1, S2} over X is given by

αd(S) = min{α̃d(x1, y1|x2, y2) : x1, y1 ∈ S1, x2, y2 ∈ S2},

where

α̃d(x1, y1|x2, y2) =
1
2
(max{d(x1, y1) + d(x2, y2), d(x1, x2) + d(y1, y2),

d(x1, y2) + d(y1, x2)} − d(x1, y1) − d(x2, y2)).

(Note that the latter is always non-negative.) We say that S is a d-split if
αd(S) > 0.

The following result establishes that circular networks can be reconstructed from
their associated metric.

Lemma 1 (d-splits and circular networks [6]). Let X be a set of n taxa
and let N = (X ,S, w) be a circular network with associated metric d. Then S
coincides with the set of all d-splits of N = (X ,S, w). Further the isolation index
αd(S) equals w(S) for all S ∈ S.

The split decomposition method reconstructs N = (X ,S, w) from d in poly-
nomial time. When N is compatible, d is an additive metric. See e.g. [2,5].

In practice one obtains an estimate d̂ of d, called the distance matrix,
from DNA sequences, e.g., through the Jukes-Cantor formula [22] or the log-
det distance [23]. The accuracy of this estimate depends on the amount of data
used [10,11]. In previous work in the context of tree reconstruction, distorted
metrics were used to encode the fact that large d-values typically produce unre-
liable d̂-estimates.

Definition 6 (Distorted metrics [13,14]). Suppose N = (X ,S, w) is a split
network with associated metric d. Let τ,R > 0. We say that a dissimilarity
d̂ : X × X → [0,+∞] is a (τ,R)-distorted metric of N if d̂ is accurate on
“short” distances, that is, for all x, y ∈ X

d(x, y) < R + τ or d̂(x, y) < R + τ =⇒ |d(x, y) − d̂(x, y)| < τ.

We refer to τ and R as the tolerance and accuracy radius of d̂ respectively.

Distorted metrics have previously been motivated by analyzing Markov models
on trees that are commonly used to model the evolution of DNA sequences [10,
11]. Such models have also been extended to split networks [24].

3 Main Results

By the reconstruction result mentioned above, any circular network N =
(X ,S, w) with associated metric d can be reconstructed from a (τ,R)-distorted
metric where τ is 0 and R is greater or equal than the diameter max{d(x, y) :
x, y ∈ X} of N . In the tree case, it has been shown that a much smaller R
suffice [10,11,14,17]. Here we establish such results for circular networks.
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Chord depth and maximum incompatibility. To bound the tolerance and accu-
racy radius needed to reconstruct a circular network from a distorted metric,
we introduce several structural parameters. The first two parameters generalize
naturally from the tree context.

Definition 7 (Minimum weight). Let N = (X ,S, w) be a split network. The
minimum weight of N is given by

εN = min{w(S) : S ∈ S}.

Let N = (X ,S, w) be a split network with associated metric d. For a subset of
splits A ⊆ S, we let

d(x, y;A) =
∑

S∈S|x,y∩A
w(S), (4)

be the distance between x and y restricted to those splits in A.

Definition 8 (Chord depth). Let N = (X ,S, w) be a split network with asso-
ciated metric d. The chord depth of a split S ∈ S is

ΔN (S) = min {d(x, y;CN (S)) : x, y ∈ X such that S ∈ S|x,y} ,

and the chord depth of N is the largest chord depth among all of its splits

ΔN = max {ΔN (S) : S ∈ S} .

It was shown in [17, Corollary 1] that, if N = (X ,S, w) is compatible, then a
(τ,R)-distorted metric with τ < 1

4εN and R > 2ΔN + 5
4εN suffice to reconstruct

N in polynomial time (among compatible networks).
For more general circular networks, the minimum weight and chord depth

are not sufficient to characterize the tolerance and accuracy radius required for
reconstructibility; see Example 1 below. For that purpose, we introduce a new
notion that, roughly speaking, measures the extent to which a split network
differs from a tree.

Definition 9 (Maximum incompatibility). Let N = (X ,S, w) be a split
network. The incompatible weight of a split S ∈ S is

ΩN (S) =
∑

S′∈I (S)

w(S′),

and the maximum incompatibility of N is the largest incompatible weight
among all of its splits

ΩN = max{ΩN (S) : S ∈ S}.

We drop the subscript in εN , ΔN and ΩN when the N is clear from context.
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Statement of results. We now state our main result.

Theorem 1. NetworkReconstruction Suppose N = (X ,S, w) is a circular net-
work. Given a (τ,R)-distorted metric with τ < 1

4εN and R > 3ΔN +7ΩN + 5
2εN ,

the split set S can be reconstructed in polynomial time together with weight esti-
mates ŵ : S → (0,+∞) satisfying |ŵ(S) − w(S)| < 2τ .

Establishing robustness to noise of circular network reconstruction algorithms is
important given that, as explained above, such networks are used in practice to
tentatively diagnose deviations from tree-like evolution. Errors due to noise can
confound such analyses. See e.g. [8] for a discussion of these issues.

In [17, Sect. 4], it was shown that in the tree case the accuracy radius must
depend linearly on the depth. The following example shows that the accuracy
radius must also depend linearly on the maximum incompatibility.

Example 1 (Depth is insufficient; linear dependence in maximum incompatibility
is needed). Consider the two circular networks in Fig. 1. In both networks,
X = {x1, x2, y1, y2} ∪ {z0, z1, . . . , zn}, and the n vertical lines, the horizontal
line, and the two arcs are splits of weight 1. The chord depth of both networks
is 1 while their maximum incompatibility is n. In both networks

– d(zi, xj) = i + 1, 0 ≤ i ≤ n, 1 ≤ j ≤ 2,
– d(zi, yj) = n − i + 1, 0 ≤ i ≤ n, 1 ≤ j ≤ 2,
– d(x1, x2) = d(y1, y2) = 2,
– d(x1, y2) = d(x2, y1) = n + 2.

The only difference is that, in graph (A), d(x1, y1) = n + 2 and d(x2, y2) = n
while, in graph (B), d(x2, y2) = n+2 and d(x1, y1) = n. If we choose the distance
matrix d̂ as follows:

– d̂(x1, y1) = d̂(x2, y2) = n + 1,
– d̂ = d for all other pairs,

then d̂ is a (τ, n−1)-distorted metric of both networks for any τ ∈ (0, 1). Hence,
these two circular networks are indistinguishable from d̂. Observe that the chord
depth is 1 for any n, but the maximum incompatibility can be made arbitrary
large. (Note that the claim still holds if we replace the chord depth with the
“full chord depth” max{min{d(x, y) : x, y ∈ X , S ∈ S|x,y} : S ∈ S}, which also
includes weights of incompatible splits separating x and y.)

Proof idea. Our proof of Theorem 1 is based on a divide-and-conquer approach
of [17], first introduced in [14] and also related to the seminal work of [10,
11] on short quartet methods and the decomposition methods of [19,20]. More
specifically, we first reconstruct sub-networks in regions of small diameter. We
then extend the bipartitions to the full taxon set by hopping back from each
taxon to this small region and recording which side of the split is reached first.
However, the work of [17] relies heavily on the tree structure, which simplifies
many arguments. Our novel contributions here are twofold:
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Fig. 1. Two circular networks indistinguishable from a distorted metric with sublinear
dependence on the maximum incompatibility. Here the taxa are ordered on a circle
and lines indicate splits. For instance, in (A), the leftmost vertical line is the split
with {z0, x1, x2} on one side and all other taxa on the other. In both networks, X =
{x1, x2, y1, y2} ∪ {z0, z1, . . . , zn}, and the n vertical lines, the horizontal line, and the
two arcs are splits of weight 1.

– We define the notion of maximum incompatibility and highlight its key role
in the reconstruction of circular networks, as we discussed above.

– We extend the effective divide-and-conquer methodology developed in [10,11,
14,17,19,20] to circular networks. The analysis of this more general class of
split networks is more involved than the tree case. In particular, we introduce
the notion of a compatible chain—an analogue of paths in graphs—which
may be of independent interest in the study of split networks.

Details are provided in [25].
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